Linear time approximation scheme for the multiprocessor open shop problem
نویسندگان
چکیده
منابع مشابه
Approximation algorithms for the multiprocessor open shop scheduling problem
We investigate the multiprocessor multi stage open shop scheduling problem In this variant of the open shop model there are s stages each consisting of a number of parallel identical machines Each job consists of s operations one for each stage that can be executed in any order The goal is to nd a non preemptive schedule that minimizes the makespan We derive two approximation results for this N...
متن کاملCat swarm optimization for solving the open shop scheduling problem
This paper aims to prove the efficiency of an adapted computationally intelligence-based behavior of cats called the cat swarm optimization algorithm, that solves the open shop scheduling problem, classified as NP-hard which its importance appears in several industrial and manufacturing applications. The cat swarm optimization algorithm was applied to solve some benchmark instances from the lit...
متن کاملApproximation Algorithms for the Open Shop Problem with Delivery Times
In this paper we consider the open shop scheduling problem where the jobs have delivery times. The minimization criterion is the maximum lateness of the jobs. This problem is known to be NP-hard, even restricted to only 2 machines. We establish that any list scheduling algorithm has a performance ratio of 2. For a fixed number of machines, we design a polynomial time approximation scheme (PTAS)...
متن کاملA Linear-Time Online Task Assignment Scheme for Multiprocessor Systems
A new online task assignment scheme is presented for multiprocessor sysiems where individual processors ezecute the rate-monotonic scheduling algorithm. The computational complezity of the task assignment scheme grows linearly with the number of iasks, and its performance i s shown t o be significantly better than previously ezisiing schemes. The superiority of the assignment scheme is achieved...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2001
ISSN: 0166-218X
DOI: 10.1016/s0166-218x(00)00375-9